Total Maximum Daily Load

Nutrients and Organic Enrichment / Low

DO For Bridge and Elam Creek and

North Independent Streams Basin

Alcorn and Prentiss Counties, Mississippi

Prepared By

Mississippi Department of Environmental Quality
Office of Pollution Control
Standards, Modeling, and TMDL Branch

MDEQ PO Box 2261 Jackson, MS 39225 (601) 961-5171 www.deg.state.ms.us

FOREWORD

This report has been prepared in accordance with the schedule contained within the federal consent decree dated December 22, 1998. The report contains one or more Total Maximum Daily Loads (TMDLs) for water body segments found on Mississippi's 1996 Section 303(d) List of Impaired Water bodies. Because of the accelerated schedule required by the consent decree, many of these TMDLs have been prepared out of sequence with the State's rotating basin approach. The implementation of the TMDLs contained herein will be prioritized within Mississippi's rotating basin approach.

The amount and quality of the data on which this report is based are limited. As additional information becomes available, the TMDLs may be updated. Such additional information may include water quality and quantity data, changes in pollutant loadings, or changes in landuse within the watershed. In some cases, additional water quality data may indicate that no impairment exists.

Conversion Factors

To convert from	То	Multiply by	To convert from	То	Multiply by
mile ²	acre	640	acre	ft ²	43560
km ²	acre	247.1	days	seconds	86400
m^3	ft ³	35.3	meters	feet	3.28
ft ³	gallons	7.48	ft ³	gallons	7.48
ft ³	liters	28.3	hectares	acres	2.47
cfs	gal/min	448.8	miles	meters	1609.3
cfs	MGD	0.646	tonnes	tons	1.1
m^3	gallons	264.2	μg/l * cfs	gm/day	2.45
m^3	liters	1000	μg/l * MGD	gm/day	3.79

Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10 ⁻¹	deci	d	10	deka	da
10-2	centi	С	10^{2}	hecto	h
10-3	milli	m	10^{3}	kilo	k
10 ⁻⁶	micro	μ	10^{6}	mega	M
10-9	nano	n	10 ⁹	giga	G
10 ⁻¹²	pico	p	10 ¹²	tera	T
10 ⁻¹⁵	femto	f	10 ¹⁵	peta	P
10 ⁻¹⁸	atto	a	10 ¹⁸	exa	Е

TABLE OF CONTENTS

TMDL INFORMATION PAGE	5
EXECUTIVE SUMMARY	7
INTRODUCTION 1.1 Background 1.2 Listing History 1.3 Applicable Water Body Segment Use	
1.4 Applicable Water Body Segment Standards	
WATER BODY ASSESSMENT 2.1 Water Quality Data 2.2 Assessment of Point Sources 2.3 Assessment of Non-Point Sources 2.4 Estimated Existing Load for Total Nitrogen and Total Phosphorus	
ALLOCATION	
CONCLUSION	17
REFERENCES	19
Appendix A – Model Output for WLAs	20
Appendix B – Tuscumbia River Monitoring Report	35

FIGURES

Figure 1.	Tuscumbia River Canal	7
	Tuscumbia River Canal Watershed Landuse	
Figure 3.	North Independent Drainage Area to Flow Comparison	12
Figure 4.	STREAM model output for Tuscumbia River Canal	15
	TABLES	
Table 1.	Listing Information	5
	Water Quality Standards	
Table 3.	Total Maximum Daily Load for Nutrients in Tuscumbia River Canal	6
Table 4.	Total Maximum Daily Load for Total Biological Oxygen Demand (ultimate)	6
Table 5.	Point Source Loads for Tuscumbia River Canal	6
Table 6.	TBODu Calculations for WLA	10
Table 7.	TMDL Calculations and Watershed Sizes	13
Table 8.	Calculation of TBODu Load Allocation for Critical 7Q10 flow	15
	TMDL Loads	

TMDL INFORMATION PAGE

Table 1. Listing Information

Name	ID	County	HUC	Monitored Cause					
Tuscumbia River Canal	MS203TE	Prentiss, Alcorn 08010207 Nutrients a		Nutrients and Organic Enrichment / Low DO					
Near Cuba from headwat	Near Cuba from headwaters to the Tennessee line								
Bridge Creek	MS203BE Alcorn		08010207	Nutrients and Organic Enrichment / Low DO					
At Corinth from headwat	ers to the Tuscu	mbia River Canal							
Elam Creek			Nutrients and Organic Enrichment / Low DO						
At Corinth from headwat	At Corinth from headwaters to Bridge Creek								

Table 2. Water Quality Standards

Parameter	Beneficial	Water Quality Criteria
	use	
Nutrients	Aquatic Life Support	Waters shall be free from materials attributable to municipal, industrial, agricultural, or other dischargers producing color, odor, taste, total suspended or dissolved solids, sediment, turbidity, or other conditions, in such degree as to create a nuisance, render the waters injurious to public health, recreation, or to aquatic life and wildlife, or adversely affect the palatability of fish, aesthetic quality, or impair the waters for any designated uses.
Dissolved Oxygen	Aquatic Life Support	DO concentrations shall be maintained at a daily average of not less than 5.0 mg/l with an instantaneous minimum of not less than 4.0 mg/l. Natural conditions are defined as background water quality conditions due only to non-anthropogenic sources. The criteria herein apply specifically with regard to substances attributed to sources (discharges, nonpoint sources, or instream activities) as opposed to natural phenomena. Waters may naturally have characteristics outside the limits established by these criteria. Therefore, naturally occurring conditions that fail to meet criteria should not be interpreted as violations of these criteria.

Table 3. Total Maximum Daily Load for Nutrients in Tuscumbia River Canal

	WLA lbs/day	LA lbs/day	MOS	TMDL lbs/day
Total Nitrogen	830	1010	Implicit	1840
Total Phosphorous	180	83	Implicit	263

Table 4. Total Maximum Daily Load for Total Biological Oxygen Demand (ultimate)

	WLA	LA	MOS	TMDL
	lbs/day	lbs/day	WIOS	lbs/day
TBODu	2280	133	Implicit	2413

Table 5. Point Source Loads for Tuscumbia River Canal

Facility	Flow MGD	TN lbs	TP lbs	TBODu lbs
Corinth POTW	6.0	576	125*	1608
Booneville POTW	2.0	192	42*	479*
Rienzi POTW	0.6	58	13*	161*
Kossuth School	0.0275	2.6	1.3	21
Biggersville School	0.015	1.4	0.7	11

^{*} Indicates a reduction from estimated current load

EXECUTIVE SUMMARY

This TMDL has been developed for Tuscumbia River Canal, including Bridge and Elam Creeks, which were placed on the Mississippi 2008 Section 303(d) List of Impaired Water Bodies. These streams were originally listed due to evaluated causes of sediment, organic enrichment / low dissolved oxygen, and nutrients. Subsequent biological monitoring concluded the streams were impaired for biological impairment. The stressor identification process pointed to organic enrichment and nutrient enrichment as probable primary stressors. Sediment will be addressed in a separate TMDL report. This TMDL will provide an estimate of the total biochemical oxygen demand (TBODu), total nitrogen (TN) and total phosphorus (TP) allowable in this watershed.

Mississippi does not have water quality standards for allowable nutrient concentrations. MDEQ currently has a Nutrient Task Force (NTF) working on the development of criteria for nutrients. An annual concentration of 0.7 mg/l is an applicable target for TN and 0.10 mg/l for TP for water bodies located in ecoregion 65. MDEQ is presenting these preliminary target values for TMDL development which are subject to revision after the development of numeric nutrient criteria.

The Tuscumbia River Canal Watershed is located in HUC 08010207. The listed portion of Tuscumbia River Canal is near Cuba from the headwaters to the Tennessee line. Bridge and Elam Creeks are both tributaries to Tuscumbia River Canal. The location of the watershed for the listed segment is shown in Figure 1.

The Tuscumbia River Canal Watershed evaluation indicated that the impairment is due to phosphorus from point and nonpoint sources. The limited nutrient data and estimated existing ecoregion concentrations indicate reductions of phosphorus can be accomplished with installation of best management practices and point source reductions. Additionally, the TMDL will require the total nitrogen to be capped at the current estimate for each point source in the watershed.

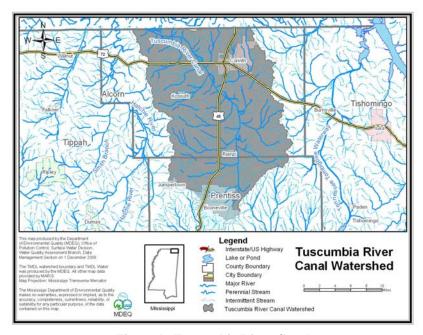


Figure 1. Tuscumbia River Canal

INTRODUCTION

1.1 Background

The identification of water bodies not meeting their designated use and the development of total maximum daily loads (TMDLs) for those water bodies are required by Section 303(d) of the Clean Water Act and the Environmental Protection Agency's (EPA) Water Quality Planning and Management Regulations (40 CFR part 130). The TMDL process is designed to restore and maintain the quality of those impaired water bodies through the establishment of pollutant specific allowable loads. This TMDL has been developed for the 2008 §303(d) listed segments.

1.2 Listing History

The impaired segments were listed due to evaluating the watershed for potential impairment. Biological sampling indicated the probable primary stressors are organic enrichment and nutrient enrichment. There was a special study completed in 2006 in and around Corinth. Results from that study were used to calibrate the STREAM model used for WLA development for these facilities.

There are no state criteria in Mississippi for nutrients. These criteria are currently being developed by the Mississippi Nutrient Task Force in coordination with EPA Region 4. MDEQ proposed a work plan for nutrient criteria development that has been mutually agreed upon with EPA Region 4 and is on schedule according to the approved timeline for development of nutrient criteria (MDEQ, 2007).

1.3 Applicable Water Body Segment Use

The water use classifications are established by the State of Mississippi in the document *State of Mississippi Water Quality Criteria for Intrastate, Interstate, and Coastal Waters* (MDEQ, 2007). The designated beneficial use for the listed segments is Fish and Wildlife.

1.4 Applicable Water Body Segment Standards

The water quality standard applicable to the use of the water body and the pollutant of concern is defined in the State of Mississippi Water Quality Criteria for Intrastate, Interstate, and Coastal Waters (MDEQ, 2007). Mississippi's current standards contain a narrative criteria that can be applied to nutrients which states "Waters shall be free from materials attributable to municipal, industrial, agricultural, or other discharges producing color, odor, taste, total suspended or dissolved solids, sediment, turbidity, or other conditions in such degree as to create a nuisance, render the waters injurious to public health, recreation, or to aquatic life and wildlife, or adversely affect the palatability of fish, aesthetic quality, or impair the waters for any designated use (MDEQ, 2007)."

1.5 Nutrient Target Development

In the 1999 Protocol for Developing Nutrient TMDLs, EPA suggests several methods for the development of numeric criteria for nutrients (USEPA, 1999). In accordance with the 1999

Protocol, "The target value for the chosen indicator can be based on: comparison to similar but unimpaired waters; user surveys; empirical data summarized in classification systems; literature values; or professional judgment."

For this TMDL, MDEQ is presenting preliminary targets for TN and TP. An annual concentration 0.7 mg/l is an applicable target for TN and 0.1 mg/l for TP for water bodies located in ecoregion 65. However, MDEQ is presenting these preliminary target values for TMDL development which are subject to revision after the development of nutrient criteria, when the work of the NTF is complete.

WATER BODY ASSESSMENT

2.1 Water Quality Data

The data for Tuscumbia River Canal are presented in Appendix B. The data were used to calibrate the STREAM model for the WLA development for the point sources.

2.2 Assessment of Point Sources

There are 3 significant NPDES point sources in the watershed along with 2 schools with smaller flows. The TMDL limits for the permits are shown in Table 6 and 7. The 2 schools are included in the calculations for these TMDLs, however, because of their small contributions to the watershed, they are not included in the recommendation for nutrient permit limits at this time.

Table 6. TBODu Calculations for WLA

Permit	Facility	Flow MGD	CBODu	NBODu	TBODu
MS0021652	Corinth	6	1150.92	457.37	1608.29
MS0029084	Kossuth Sch	0.0275	10.32	10.48	20.80
MS0030589	Biggersville Sch	0.015	5.63	5.72	11.35
MS0033961	Reinzi	0.6	115.09	45.74	160.83
MS0042030	Booneville	2	326.09	152.46	478.55
					2279.81

2.3 Assessment of Non-Point Sources

Non-point loading of nutrients and organic material in a water body results from the transport of the pollutants into receiving waters by overland surface runoff, groundwater infiltration, and atmospheric deposition. The two primary nutrients of concern are nitrogen and phosphorus. Total nitrogen is a combination of many forms of nitrogen found in the environment. Inorganic nitrogen can be transported in particulate and dissolved phases in surface runoff. Dissolved inorganic nitrogen can be transported in groundwater and may enter a water body from groundwater infiltration. Finally, atmospheric gaseous nitrogen may enter a water body from atmospheric deposition.

Unlike nitrogen, phosphorus is primarily transported in surface runoff when it has been sorbed by eroding sediment. Phosphorus may also be associated with fine-grained particulate matter in the atmosphere and can enter streams as a result of dry fallout and rainfall (USEPA, 1999). However, phosphorus is typically not readily available from the atmosphere or the natural water supply (Davis and Cornwell, 1988). As a result, phosphorus is typically the limiting nutrient in most non-point source dominated rivers and streams, with the exception of watersheds which are dominated by agriculture and have high concentrations of phosphorus contained in the surface runoff due to fertilizers and animal excrement or watersheds with naturally occurring soils which are rich in phosphorus (Thomann and Mueller, 1987).

Watersheds with a large number of failing septic tanks may also deliver significant loadings of phosphorus to a water body. All domestic wastewater contains phosphorus which comes from humans and the use of phosphate containing detergents. Table 7 presents the estimated loads from various land use types in the Pearl Basin based on information from USDA ARS Sedimentation Laboratory. (Shields, et. al., 2008)

The watershed contains mainly forest land but also has different landuse types, including urban, water, and wetlands. The land use information for the watershed is based on the National Land Cover Database (NLCD). Forest is the dominant landuse within this watershed. The landuse distribution for the Tuscumbia River Canal Watershed is shown in Table 7 and Figure 2. By multiplying the landuse category size by the estimated nutrient load, the watershed specific estimate can be calculated. Table 7 presents the estimated loads, the target loads, and the reductions needed to meet the TMDLs.

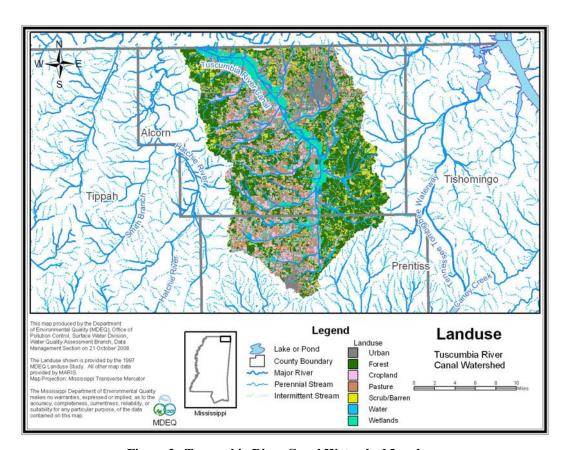


Figure 2. Tuscumbia River Canal Watershed Landuse

2.4 Estimated Existing Load for Total Nitrogen and Total Phosphorus

The average annual flow in the watershed was calculated by utilizing the flow vs. watershed area graph shown in Figure 4 below. All available gages were compared to the watershed size. A very strong correlation between flow and watershed size was developed for the North Independent Streams Basins. The equation for the line that best fits the data was then used to estimate the annual average flow for the Tuscumbia River Canal watershed. The TMDL target TN and TP loads were then calculated, using Equation 1 and the results are shown in Table 7.

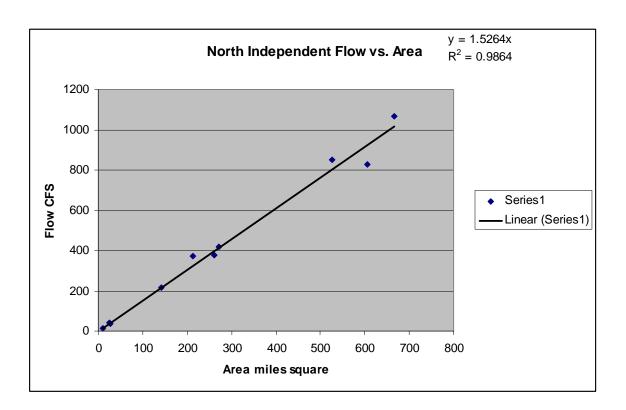


Figure 3. North Independent Drainage Area to Flow Comparison

 $Nutrient\ Load\ (lb/day) = Flow\ (cfs)*5.394\ (conversion\ factor)*\ Nutrient\ Concentration\ (mg/L)$ (Equation 1)

Table 7. TMDL Calculations and Watershed Sizes

Water body	y Tuscumbia River Canal		Water	Urban	Scrub/Barren	Forest	Pasture/Grass	Cropland	Wetland	Total	
		Acres	3330.4	18380.3	22142.7	72214.5	33292.7	31794.9	23155.8	204311	
Land Use	TN kg/mile2	Percent	1.63%	9.00%	10.84%	35.35%	16.30%	15.56%	11.33%	100.00%	
Forest	111.3	Miles ² in watershed	5.2	28.7	34.6	112.8	52.0	49.7	36.2	319.2	
Pasture	777.2	Flow in cfs based on area	487.3	cfs							
Cropland	5179.9										
Urban	296.4	TN Load kg/mi ² annual avg	257.4	296.4	111.3	111.3	777.2	5179.9	265.2		
Water	257.4	TP Load kg/mi ² annual avg	257.4	3.1	62.1	62.1	777.2	2589.9	265.2		
Wetland	265.2										
aquaculture	111.3	TN Load kg/day	3.7	23.3	10.6	34.4	110.8	705.0	26.3	914.0	kg/day
		TP Load kg/day	3.7	0.2	5.9	19.2	110.8	352.5	26.3	518.6	kg/day
Land Use	TP kg/mile2										
Forest	62.1	TN target concentration	0.7	mg/l							
Pasture	777.2	TP target concentration	0.1	mg/l							
Cropland	2589.9										
Urban	3.1	TN estimated concentration	0.77	mg/l							
Water	257.4	TP estimated concentration	0.43	mg/l							
Wetland	265.2										
aquaculture	62.1	TN target load	1839.88	lbs/day							
		TP target load	262.84	lbs/day							
		TN estimated load per day	2015.11	lbs/day							
		TP estimated load per day	1143.23	lbs/day		The land use	a calculations are ba	seed on 2004 (data Thein	utrient estim	nates are
			0.700				The land use calculations are based on 2004 data. The nutrient estimate based on USDA ARS. The TMDL targets are based on EPA guidance				
		TN reduction needed	8.70%			ca	alculation of targets	when consider	ing all avail	able data.	
		TP reduction needed	77.01%								

ALLOCATION

3.1 Wasteload Allocation

Total Nitrogen

The 8.7% reduction for TN shown in Table 7 is not considered to be significant and will be addressed through reductions in nonpoint sources. No point source reductions are warranted for TN.

Total Phosphorus

Reductions are needed for total phosphorus at Booneville POTW, Rienzi POTW, and Corinth POTW. The TMDL places a limit of 2.5 mg/l on these point sources. This target represents a significant reduction in the estimated load for treatment systems of this type. The distribution of point source to nonpoint source load for phosphorus is approximately 2 to 1. MDEQ determined this target based on that ratio and the significant reduction this limit will place on the current point sources.

TBODu

Modeling for TBODu in the watershed indicated that a permit limit reduction is needed at the Booneville POTW and at Rienzi POTW. Figure 4 shows the daily average modeled dissolved oxygen in the Tuscumbia River Canal based on the STREAM model after reductions were made in the model to the Booneville POTW and Rienzi POTW. See Appendix A. To meet water quality standards, the limits proposed by this TMDL for Booneville are 9-2-6 which is a minor reduction from the current permit limits of 10-2-6. The reduction needed at Rienzi POTW is from 15-5-6 currently to 10-2-6.

The critical condition for TBODu indicated by the model was at River Mile 24.9 which is above the discharge point evaluated for the Corinth POTW. The Booneville POTW and Rienzi POTW discharges were the effluent contributors to the critical condition. The TMDL calculations for TBODu were completed using the modeled 7Q10 critical condition flow.

3.2 Load Allocation

Best management practices (BMPs) should be encouraged in the watersheds to reduce potential TBODu, TN, and TP loads from non-point sources. The LAs for TN and TP were calculated by subtracting the WLA from the TMDL. For land disturbing activities related to silvaculture, construction, and agriculture, it is recommended that practices, as outlined in "Mississippi's BMPs: Best Management Practices for Forestry in Mississippi" (MFC, 2000), "Planning and Design Manual for the Control of Erosion, Sediment, and Stormwater" (MDEQ, et. al, 1994), and "Field Office Technical Guide" (NRCS, 2000), be followed, respectively.

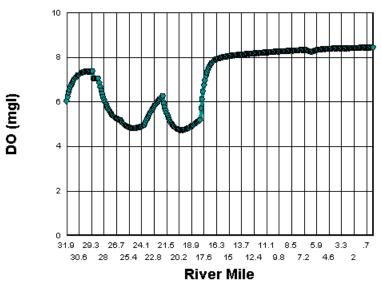


Figure 4. STREAM model output for Tuscumbia River Canal

To determine the LA for TBODu the model segment flows were multiplied by the natural background typical concentration of 2 mg/l CBODu plus the Ammonia-N concentration of 0.1 mg/l. Table 8 shows the modeled segments with the LA flow calculating the TBODu LA for this watershed, which is 133 lbs. per day.

Table 8. Calculation of TBODu Load Allocation for Critical 7Q10 flow

RM	RM	Head	Dist	Flow	Conc	Conversion	Ammonia-	NBOD	CBOD	TBOD
Begin	End	cfs	cfs	cfs	mg/l		N mg/l			
31.9	30.0	0.03	0.01	0.04	2.0	5.39	0.1	0.1	7.4	7.5
30.0	29.2	0.00	0.05	0.05	2.0	5.39	0.1	0.1	7.4	7.6
29.2	28.6	0.00	0.02	0.02	2.0	5.39	0.1	0.0	7.4	7.5
28.6	26.3	0.00	0.11	0.11	2.0	5.39	0.1	0.3	7.5	7.8
26.3	23.8	0.00	0.38	0.38	2.0	5.39	0.1	0.9	7.8	8.7
23.8	21.9	0.00	0.12	0.12	2.0	5.39	0.1	0.3	7.5	7.8
21.9	18.0	0.00	0.66	0.66	2.0	5.39	0.1	1.6	8.1	9.7
18.0	6.9	0.00	1.44	1.44	2.0	5.39	0.1	3.5	8.8	12.4
6.9	6.4	0.00	2.84	2.84	2.0	5.39	0.1	7.0	10.2	17.2
6.4	4.6	0.00	0.07	0.07	2.0	5.39	0.1	0.2	7.5	7.6
4.6	3.9	0.00	0.04	0.04	2.0	5.39	0.1	0.1	7.4	7.5
3.9	3.0	0.00	0.35	0.35	2.0	5.39	0.1	0.9	7.7	8.6
3.0	1.9	0.00	0.15	0.15	2.0	5.39	0.1	0.4	7.5	7.9
1.9	1.3	0.00	0.04	0.04	2.0	5.39	0.1	0.1	7.4	7.5
1.3	0.0	0.00	0.08	0.08	2.0	5.39	0.1	0.2	7.5	7.7
				6.39				15.7	117.2	133.0

3.3 Incorporation of a Margin of Safety

The margin of safety is a required component of a TMDL and accounts for the uncertainty about the relationship between pollutant loads and the quality of the receiving water body. The two types of MOS development are to implicitly incorporate the MOS using conservative model assumptions or to explicitly specify a portion of the total TMDL as the MOS. The MOS selected for this model is implicit.

3.4 Calculation of the TMDL

Equation 1 was used to calculate the TMDL for TP and TN. The target TN and TP concentrations were used with the average flow for the watershed to determine the nutrient TMDLs. The WLA was calculated by using the permit flow values from all of the point sources multiplied by 11.5 mg/l TN and 2.5 mg/l TP. The LA was calculated as the difference between the TMDL and the WLA. The modeled output for the critical condition indicates there is no violation of water quality standards for the limits indicated in the TMDL. The allocations in the TMDL are established to attain the applicable water quality standards.

Table 9. TMDL Loads

	WLA lbs/day	LA lbs/day	MOS	TMDL lbs/day
Total Nitrogen	830	1010	Implicit	1840
Total Phosphorous	180	83	Implicit	263
TBODu	2280	133	Implicit	2413

The nutrient TMDL loads were then compared to the estimated existing loads previously calculated in Table 7. A 77% reduction in TP loading is recommended and an 8.7% reduction in TN is recommended for nonpoint sources. Best management practices are encouraged in this watershed to reduce the nonpoint nutrient loads.

3.5 Seasonality and Critical Condition

This TMDL accounts for seasonal variability by requiring allocations that ensure year-round protection of water quality standards, including during critical conditions.

CONCLUSION

Nutrients were addressed through an estimate of a preliminary total phosphorous concentration target and a preliminary total nitrogen concentration target. Based on the estimated existing and target total phosphorous concentrations, this TMDL recommends a 77% reduction of the nonpoint phosphorous loads entering these water bodies to meet the preliminary target of 0.10 mg/l. The TMDL recommends a limit of 2.5 mg/l TP for each major point source in the watershed, which is a significant reduction (52%) from the current estimated load. The TMDL recommends an 8.7% reduction in TN from nonpoint sources, but does not recommend a limit for point sources. The TMDL recommends a cap of 11.5 mg/l TN for each major point source. The implementation of BMP activities should reduce the nutrient load entering the creeks. This will provide improved water quality for organic enrichment and the support of aquatic life in the water bodies, and will result in the attainment of the applicable water quality standards.

The WLA in the TMDL indicates a reduction is needed in Booneville POTW to 9-2-6 and in Rienzi to 10-2-6 to meet the TBODu maximum load.

4.1 Next Steps

MDEQ's Basin Management Approach and Nonpoint Source Program emphasize restoration of impaired waters with developed TMDLs. During the watershed prioritization process to be conducted by the North Independent Streams Basin Team, this TMDL will be considered as a basis for implementing possible restoration projects. The basin team is made up of state and federal resource agencies and stakeholder organizations and provides the opportunity for these entities to work with local stakeholders to achieve quantifiable improvements in water quality. Together, basin team members work to understand water quality conditions, determine causes and sources of problems, prioritize watersheds for potential water quality restoration and protection activities, and identify collaboration and leveraging opportunities. The Basin Management Approach and the Nonpoint Source Program work together to facilitate and support these activities.

The Nonpoint Source Program provides financial incentives to eligible parties to implement appropriate restoration and protection projects through the Clean Water Act's Section 319 Nonpoint Source (NPS) Grant Program. This program makes available around \$1.6M each grant year for restoration and protections efforts by providing a 60% cost share for eligible projects.

Mississippi Soil and Water Conservation Commission (MSWCC) is the lead agency responsible for abatement of agricultural NPS pollution through training, promotion, and installation of BMPs on agricultural lands. USDA Natural Resource Conservation Service (NRCS) provides technical assistance to MSWCC through its conservation districts located in each county. NRCS assists animal producers in developing nutrient management plans and grazing management plans. MDEQ, MSWCC, NRCS, and other governmental and nongovernmental organizations work closely together to reduce agricultural runoff through the Section 319 NPS Program.

Mississippi Forestry Commission (MFC), in cooperation with the Mississippi Forestry Association (MFA) and Mississippi State University (MSU), have taken a leadership role in the development and promotion of the forestry industry Best Management Practices (BMPs) in Mississippi. MDEQ is designated as the lead agency for implementing an urban polluted runoff

control program through its Stormwater Program. Through this program, MDEQ regulates most construction activities. Mississippi Department of Transportation (MDOT) is responsible for implementation of erosion and sediment control practices on highway construction.

Due to this TMDL, projects within this watershed will receive a higher score and ranking for funding through the basin team process and Nonpoint Source Program described above.

4.2 Public Participation

This TMDL will be published for a 30-day public notice. During this time, the public will be notified by publication in the statewide newspaper. The public will be given an opportunity to review the TMDLs and submit comments. MDEQ also distributes all TMDLs at the beginning of the public notice to those members of the public who have requested to be included on a TMDL mailing list. Anyone wishing to become a member of the TMDL mailing list should contact Kay Whittington at Kay_Whittington@deq.state.ms.us.

All comments should be directed to Kay_Whittington@deq.state.ms.us or Kay Whittington, MDEQ, PO Box 2261, Jackson, MS 39225. All comments received during the public notice period and at any public hearings become a part of the record of this TMDL and will be considered in the submission of this TMDL to EPA Region 4 for final approval.

REFERENCES

Baca, Keith A., 2007. Native American Place Names in Mississippi. Jackson, Ms. University Press of Mississippi.

Davis and Cornwell. 1988. Introduction to Environmental Engineering. McGraw-Hill.

MDEQ. 2007. Mississippi's Plan for Nutrient Criteria Development. Office of Pollution Control.

MDEQ. 2007. State of Mississippi Water Quality Criteria for Intrastate, Interstate, and Coastal Waters. Office of Pollution Control.

MDEQ. 1994. Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification. Office of Pollution Control.

Metcalf and Eddy, Inc. 1991. Wastewater Engineering: Treatment, Disposal, and Reuse 3rd ed. New York: McGraw-Hill.

MFC. 2000. Mississippi's BMPs: Best Management Practices for Forestry in Mississippi. Publication # 107.

NRCS. 2000. Field Office Technical Guide Transmittal No. 61.

Shields, F.D. Jr., Cooper, C.M., Testa, S. III, Ursic, M.E., 2008. *Nutrient Transport in the North Independent Streams Basin, Mississippi*. USDA ARS National Sedimentation Laboratory, Oxford, Mississippi.

Telis, Pamela A. 1992. *Techniques for Estimating 7-Day, 10-Year Low Flow Characteristics for Ungaged Sites on Water bodies in Mississippi*. U.S. Geological Survey, Water Resources Investigations Report 91-4130.

Thomann and Mueller. 1987. *Principles of Surface Water Quality Modeling and Control*. New York: Harper Collins.

USEPA. 1997. Technical Guidance Manual for Developing Total Maximum Daily Loads, Book 2: Streams and Rivers, Part 1: Biochemical Oxygen Demand/Dissolved Oxygen and Nutrients/ Eutrophication. United States Environmental Protection Agency, Office of Water, Washington, D.C. EPA 823-B-97-002.

USEPA. 1999. *Protocol for Developing Nutrient TMDLs*. EPA 841-B-99-007. Office of Water (4503F), United States Environmental Protection Agency, Washington D.C. 135 pp.

USEPA. 2000. Nutrient Criteria Technical Guidance Manual Rivers and Streams. United States Environmental Protection Agency, Office of Water, Washington, D.C. EPA-822-B-00-002.

USEPA. 2008. Modeling Report for Tuscumbia River Canal (MS276E). United States Environmental Protection Agency, Region 4, Atlanta, GA.

Appendix A – Model Output for WLAs

Tuscumbia BEGINNING AT RIVER MILE 31.9

*** LOADS ***

HEADWATER WASTE SOURCE DIST. INPUT	_	DISSOLVED DXYGEN (MG/L) 7.000 6.000 7.000	CARBONACEOUS BOD (LBS/DAY) 2.00 345.21 .11 RAMETERS ***	TKN (LBS/DAY) .05 33.35 .00	Boonville 9/2/6
CS= 8.55 MG/L	PA:			.00 MG/L	S= .00 MG/L
KR= .30 /DAY	KD:	,		.30 /DAY	KA= 8.02 /DAY
TEMP=23.90 C					

REAERATION BY TSIVOGLOU SLOPE= 14.3 FT/MILE ESCAPE COEF= .11 /DAY

*** STREAM CONDITION ***

RIVER	FLOW	DO	DEFICIT	CBOD	TKN	VEL
MILE	CFS	MG/L	MG/L	MG/L	MG/L	FPS
31.900	3.194	6.031	2.518	20.128	1.937	.284
31.800	3.194	6.231	2.319	19.977	1.922	.284
31.700	3.195	6.400	2.150	19.825	1.907	.284
31.600	3.195	6.545	2.005	19.674	1.893	.284
31.500	3.196	6.667	1.882	19.524	1.879	.284
31.400	3.196	6.772	1.778	19.376	1.864	.284
31.300	3.197	6.862	1.688	19.228	1.850	.284
31.200	3.197	6.939	1.611	19.082	1.836	.284
31.100	3.198	7.005	1.545	18.936	1.822	.284
31.000	3.198	7.062	1.487	18.792	1.808	.284
30.900	3.199	7.112	1.438	18.649	1.794	.284
30.800	3.199	7.155	1.395	18.507	1.781	.284
30.700	3.200	7.193	1.357	18.366	1.767	.284
30.600	3.200	7.226	1.324	18.226	1.753	.284
30.500	3.201	7.255	1.295	18.087	1.740	.284
30.400	3.201	7.281	1.269	17.950	1.727	.284
30.300	3.202	7.304	1.245	17.813	1.714	.284
30.200	3.202	7.325	1.225	17.677	1.701	.284
30.100	3.203	7.344	1.206	17.543	1.688	.284
30.000	3.203	7.362	1.188	17.409	1.675	.284

Tuscumbia BEGINNING AT RIVER MILE 30.0

*** LOADS ***

		DISSOLVED	CARBONACEOUS	
	FLOW	OXYGEN	BOD	TKN
	(CFS)	(MG/L)	(LBS/DAY)	(LBS/DAY)
UPSTREAM	3.203	7.362	301.16	28.97

DIST. INPUT .050 7.000 .54 .03 *** PARAMETERS *** CS= 8.55 MG/LPA = .00 MG/LRA = .00 MG/LS = .00 MG/LKR= .30 /DAY KD= .30 /DAY KN= .30 /DAY KA= 7.13 /DAY TEMP=23.90 C REAERATION BY TSIVOGLOU SLOPE= 15.3 FT/MILE ESCAPE COEF= .11 /DAY *** STREAM CONDITION *** FLOW DO DEFICIT CBOD VEL RIVER TKNMG/L MG/L FPS MILE CFS MG/L MG/L 1.189 17.382 1.672 30.000 3.209 7.361 .236 29.900 3.209 7.356 1.194 17.226 1.657 .236 29.800 3.215 7.353 1.197 17.045 1.639 .236 29.700 3.220 7.352 1.198 16.866 1.622 .236 3.226 7.354 1.196 16.689 1.605 29.600 .236 7.358 1.192 16.514 1.588 29.500 3.231 .236 7.363 1.187 16.341 29.400 3.237 1.571 .236 1.181 16.169 29.300 3.242 7.369 1.554 .236 29.200 3.248 7.377 1.173 16.000 1.538 .236 Tuscumbia BEGINNING AT RIVER MILE 29.2 *** LOADS *** DISSOLVED CARBONACEOUS FLOW OXYGEN BOD TKN (CFS) (MG/L) (LBS/DAY) (LBS/DAY) UPSTREAM 3.248 7.377 280.62 26.97 WASTE SOURCE 6.000 115.04 10.00 Reinzi 10/2/6 .928 DIST. INPUT .020 7.000 .22 .01 *** PARAMETERS *** CS= 8.55 MG/LPA = .00 MG/LRA= .00 MG/L S = .00 MG/LKR= .30 /DAY KD = .30 / DAY.30 /DAY KA= 5.60 /DAY KN= TEMP=23.90 C REAERATION BY TSIVOGLOU SLOPE= 13.0 FT/MILE ESCAPE COEF= .11 /DAY *** STREAM CONDITION *** RIVER FLOW DO DEFICIT CBOD TKN VEL MILE CFS MG/L MG/L MG/L MG/L FPS 29.200 4.179 7.071 1.479 17.536 1.639 .219 29.100 4.179 7.060 1.490 17.366 1.623 .219 29.000 4.182 7.053 1.497 17.187 1.606 .219

1.501 17.010 1.590

1.501 16.835 1.573

1.500 16.662 1.557

7.054 1.496 16.491 1.541

.219

.219

.219

.219

North Independent Streams Basin

4.185

4.187

4.190

4.193

7.049

7.048

7.050

28.900

28.800

28.700

28.600

28.600 4.196 7.053 1.496 16.481 1.540 .219

Tuscumbia BEGINNING AT RIVER MILE 28.6

*** LOADS ***

		DISSOLVED	CARBONACEOUS	
	FLOW	OXYGEN	BOD	TKN
	(CFS)	(MG/L)	(LBS/DAY)	(LBS/DAY)
UPSTREAM	4.196	7.053	373.43	34.89
DIST. INPUT	.110	7.000	1.19	.06

*** PARAMETERS ***

CS= 8.55 MG/L PA= .00 MG/L RA= .00 MG/L S= .00 MG/L

KR= .30 /DAY KD= .30 /DAY KN= .30 /DAY KA= 1.70 /DAY

TEMP=23.90 C

REAERATION BY TSIVOGLOU SLOPE= 5.0 FT/MILE ESCAPE COEF= .11 /DAY

*** STREAM CONDITION ***

RIVER	FLOW	DO	DEFICIT	CBOD	TKN	VEL
MILE	CFS	MG/L	MG/L	MG/L	MG/L	FPS
28.600	4.201	7.053	1.497	16.465	1.538	.172
28.500	4.201	6.860	1.690	16.263	1.519	.172
28.400	4.205	6.682	1.868	16.047	1.499	.172
28.300	4.210	6.518	2.032	15.834	1.479	.172
28.200	4.214	6.367	2.183	15.624	1.459	.172
28.100	4.219	6.229	2.321	15.417	1.440	.172
28.000	4.223	6.103	2.447	15.213	1.421	.172
27.900	4.228	5.987	2.563	15.011	1.402	.172
27.800	4.233	5.882	2.668	14.813	1.383	.172
27.700	4.237	5.787	2.763	14.616	1.365	.172
27.700	4.242	5.701	2.703	14.423	1.347	.172
27.500	4.242	5.623	2.927	14.232		.172
27.300	4.240	5.552	2.927	14.232	1.329 1.311	
						.172
27.300	4.256	5.490	3.060	13.858	1.294	.172
27.200	4.260	5.434	3.116	13.675	1.277	.172
27.100	4.265	5.385	3.165	13.494	1.260	.172
27.000	4.269	5.341	3.209	13.315	1.243	.172
26.900	4.274	5.303	3.246	13.139	1.226	.172
26.800	4.278	5.271	3.279	12.966	1.210	.172
26.700	4.283	5.243	3.307	12.795	1.194	.172
26.600	4.288	5.220	3.330	12.626	1.178	.172
26.500	4.292	5.202	3.348	12.459	1.162	.172
26.400	4.297	5.187	3.363	12.294	1.147	.172
26.300	4.301	5.176	3.374	12.132	1.132	.172
26.300	4.306	5.177	3.372	12.121	1.131	.172

Tuscumbia BEGINNING AT RIVER MILE 26.3

*** LOADS ***

DISSOLVED CARBONACEOUS

UPSTREAM DIST. INPUT	FLOW (CFS) 4.306 .380	OXYGEN (MG/L) 5.177 7.000	BOD (LBS/DAY) 281.85 4.10 RAMETERS ***	TKN (LBS/DAY) 26.29 .20	
CS= 8.55 MG/L	P	A= .00 MG/	L RA=	.00 MG/L	S= .00 MG/L
KR= .30 /DAY	K	D= .30 /DA	Y KN=	.30 /DAY	KA= 1.25 /DAY
TEMP=23.90 C					

REAERATION BY TSIVOGLOU SLOPE= 3.8 FT/MILE ESCAPE COEF= .11 /DAY

*** STREAM CONDITION ***

RIVER	FLOW	DO	DEFICIT	CBOD	TKN	VEL
MILE	CFS	MG/L	MG/L	MG/L	MG/L	FPS
26.300	4.321	5.184	3.366	12.087	1.127	.165
26.200	4.321	5.119	3.430	11.932	1.113	.165
26.100	4.335	5.068	3.482	11.746	1.095	.165
26.000	4.350	5.022	3.528	11.563	1.078	.165
25.900	4.364	4.981	3.569	11.383	1.061	.165
25.800	4.379	4.946	3.604	11.206	1.044	.165
25.700	4.394	4.915	3.635	11.031	1.027	.165
25.600	4.408	4.889	3.661	10.860	1.011	.165
25.500	4.423	4.868	3.682	10.692	.995	.165
25.400	4.437	4.850	3.700	10.526	.979	.165
25.300	4.452	4.836	3.714	10.364	.964	.165
25.200	4.467	4.826	3.724	10.204	.949	.165
25.100	4.481	4.819	3.731	10.046	.934	.165
25.000	4.496	4.815	3.735	9.891	.919	.165
24.900	4.511	4.815	3.735	9.739	.905	.165
24.800	4.525	4.816	3.734	9.590	.891	.165
24.700	4.540	4.821	3.729	9.442	.877	.165
24.600	4.554	4.828	3.722	9.298	.863	.165
24.500	4.569	4.837	3.713	9.155	.850	.165
24.400	4.584	4.848	3.702	9.015	.836	.165
24.300	4.598	4.861	3.689	8.877	.823	.165
24.200	4.613	4.876	3.674	8.742	.810	.165
24.100	4.627	4.893	3.657	8.609	.798	.165
24.000	4.642	4.911	3.639	8.478	.785	.165
23.900	4.657	4.931	3.619	8.349	.773	.165
23.800	4.671	4.952	3.598	8.222	.761	.165

Tuscumbia BEGINNING AT RIVER MILE 23.8

*** LOADS ***

		DISSOLVED	CARBONACEOUS	
	FLOW	OXYGEN	BOD	TKN
	(CFS)	(MG/L)	(LBS/DAY)	(LBS/DAY)
UPSTREAM	4.671	4.952	207.40	19.20
DIST. INPUT	.120	7.000	1.29	.06

*** PARAMETERS ***

CS= 8.55 MG/L	D7 - 00	MG/L RA=	.00 MG/L	S= .00 MG/L
KR= .30 /DAY	KD= .30	/DAY KN=	.30 /DAY	KA= 1.90 /DAY
TEMP=23.90 C				
REAERATION BY T	SIVOGLOU SLOP	E= 5.8 FT/MIL	E ESCAPE COEF=	.11 /DAY
	*** ST	REAM CONDITION	***	
RIVER FLO	W DO DEFI	CIT CBOD	TKN VEL	
MILE CFS		J/L MG/L	MG/L FPS	
23.800 4.67		596 8.214	.760 .167	
23.700 4.67		498 8.110	.751 .167	
23.600 4.68			.740 .167	
23.500 4.68		311 7.890 224 7.783	.730 .167	
23.400 4.69 23.300 4.70		224 7.783141 7.677	.720 .167 .710 .167	
23.200 4.70		062 7.572	.700 .167	
23.100 4.71		987 7.469	.691 .167	
23.000 4.71		915 7.367	.681 .167	
22.900 4.72		846 7.267	.672 .167	
22.800 4.73	1 5.770 2.	780 7.169	.663 .167	
22.700 4.73	7 5.833 2.	717 7.071	.654 .167	
22.600 4.74	3 5.894 2.	656 6.975	.645 .167	
22.500 4.74		598 6.880	.636 .167	
22.400 4.75		542 6.787	.627 .167	
22.300 4.76		489 6.695	.618 .167	
22.200 4.76		437 6.604	.610 .167	
22.100 4.77			.602 .167	
22.000 4.77		340 6.427	.593 .167	
21.900 4.78	5 6.256 2.	294 6.340	.585 .167	
Tuscumbia BE	GINNING AT RIV	ER MILE 21.	9	
rascalibra BE				
		** LOADS ***		
	DISSOLV			
	FLOW OXYGEN	BOD	TKN	
	(CFS) (MG/L) 4.785 6.256			
	4.785 6.256 9.282 6.000		15.12 100.06	10/2/6 Corinth
DIST. INPUT	.660 7.000		.36	10/2/0 COLLINGI
	* * *	PARAMETERS **	*	
CS= 8.55 MG/L	PA= .00	MG/L RA=	.00 MG/L	S= .00 MG/L
KR= .30 /DAY	KD= .30	/DAY KN=	.30 /DAY	KA= 1.62 /DAY
TEMP=23.90 C				
REAERATION COEF	FICIENT SPECIF	'IED		
	*** ST	REAM CONDITION	***	
RIVER FLO MILE CFS		CIT CBOD G/L MG/L	TKN VEL MG/L FPS	

21.900	14.084	6.088	2.462	17.287	1.515	.148
21.800	14.084	5.913	2.637	17.039	1.493	.148
21.700	14.100	5.755	2.795	16.778	1.470	.148
21.600	14.117	5.612	2.938	16.521	1.447	.148
21.500	14.133	5.484	3.066	16.268	1.425	.148
21.400	14.150	5.370	3.180	16.019	1.403	.148
21.300	14.166	5.267	3.283	15.774	1.382	.148
21.200	14.183	5.176	3.374	15.533	1.360	.148
21.100	14.199	5.096	3.454	15.295	1.340	.148
21.000	14.216	5.026	3.524	15.061	1.319	.148
20.900	14.232	4.964	3.586	14.831	1.299	.148
20.800	14.249	4.912	3.638	14.604	1.279	.148
20.700	14.265	4.867	3.683	14.381	1.259	.148
20.600	14.282	4.829	3.721	14.161	1.240	.148
20.500	14.298 14.315	4.798 4.774	3.752 3.776	13.945 13.732	1.221 1.202	.148
20.400	14.315	4.774	3.776	13.732	1.202	.148
20.300	14.331	4.733	3.809	13.322	1.165	.148
20.200	14.346	4.732	3.818	13.113	1.148	.148
20.100	14.381	4.728	3.822	12.913	1.130	.148
19.900	14.397	4.728	3.822	12.716	1.113	.148
19.800	14.414	4.732	3.818	12.522	1.096	.148
19.700	14.430	4.739	3.811	12.331	1.079	.148
19.600	14.447	4.750	3.800	12.143	1.062	.148
19.500	14.463	4.763	3.787	11.958	1.046	.148
19.400	14.480	4.779	3.771	11.776	1.030	.148
19.300	14.496	4.798	3.752	11.596	1.014	.148
19.200	14.513	4.818	3.731	11.420	.999	.148
19.100	14.529	4.841	3.709	11.246	.983	.148
19.000	14.546	4.866	3.684	11.075	.968	.148
18.900	14.562	4.892	3.657	10.906	.954	.148
18.800	14.579	4.920	3.630	10.740	.939	.148
18.700	14.595	4.950	3.600	10.577	.925	.148
18.600	14.612	4.980	3.570	10.416	.910	.148
18.500	14.628	5.012	3.538	10.258	.897	.148
18.400	14.645	5.045	3.505	10.102	.883	.148
18.300	14.661	5.078	3.472	9.949	.869	.148
18.200	14.678	5.112	3.438	9.797	.856	.148
18.100	14.694	5.147	3.403	9.649	.843	.148
18.000	14.711	5.183	3.367	9.502	.830	.148

Tuscumbia BEGINNING AT RIVER MILE 18.0

*** LOADS ***

		DISSOLVED	CARBONACEOUS	
	FLOW	OXYGEN	BOD	TKN
	(CFS)	(MG/L)	(LBS/DAY)	(LBS/DAY)
UPSTREAM	14.711	5.183	754.85	65.94
DIST. INPUT	1.440	7.000	15.52	.78

*** PARAMETERS ***

CS=	8.55 MG/L	PA=	.00 MG/L	RA=	.00 MG/L	S=	.00 MG/L
KR=	.30 /DAY	KD=	.30 /DAY	KN=	.30 /DAY	KA=	7.37 /DAY

TEMP=23.90 C

REAERATION COEFFICIENT SPECIFIED

*** STREAM CONDITION ***

RIVER MILE CFS MG/L DO DEFICIT CBOD TKN VEL 18.000 14.724 5.184 3.366 9.496 829 2.16 17.900 14.724 5.699 2.851 9.403 821 .216 17.700 14.749 6.461 2.089 9.206 .804 .216 17.700 14.762 6.740 1.810 9.109 .796 .216 17.400 14.788 7.153 1.397 8.919 .779 .216 17.400 14.881 7.153 1.397 8.919 .779 .216 17.300 14.814 7.429 1.121 8.733 .762 .216 17.000 14.839 7.615 .935 8.551 .746 .216 17.000 14.872 7.531 1.019 8.642 .754 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.500 14.9							
18.000 14.724 5.184 3.366 9.496 829 2.16 17.800 14.724 5.699 2.851 9.403 821 2.16 17.800 14.749 6.461 2.089 9.206 .804 .216 17.700 14.749 6.461 2.089 9.206 .804 .216 17.500 14.762 6.740 1.810 9.109 .796 .216 17.500 14.788 7.153 1.397 8.919 .779 .216 17.200 14.810 7.305 1.245 8.826 .771 .216 17.200 14.827 7.531 1.019 8.642 .754 .216 17.000 14.827 7.531 1.019 8.642 .754 .216 16.900 14.865 7.742 .808 8.373 .731 .216 16.800 14.865 7.742 .808 8.373 .731 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.500 14.947							
17.900							
17.800							
17.700 14.749 6.461 2.089 9.206 .804 .216 17.500 14.762 6.740 1.810 9.109 .796 .216 17.500 14.788 7.153 1.397 8.919 .779 .216 17.400 14.801 7.305 1.245 8.826 .771 .216 17.200 14.814 7.429 1.121 8.733 .762 .216 17.100 14.839 7.615 .935 8.551 .746 .216 16.900 14.852 7.684 .866 8.462 .739 .216 16.800 14.878 7.789 .761 8.088 8.373 .731 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.500 14.994 7.862 .688 8.113 .708 .216 16.400 14.917 7.890 .660 8.028 .700 .216 16.300 14							
17.600 14.762 6.740 1.810 9.109 .796 .216 17.500 14.775 6.967 1.583 9.014 .787 .216 17.300 14.801 7.305 1.245 8.826 .771 .216 17.200 14.814 7.429 1.121 8.733 .762 .216 17.100 14.827 7.531 1.019 8.642 .754 .216 16.900 14.852 7.684 .866 8.462 .739 .216 16.900 14.852 7.684 .866 8.462 .739 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.500 14.891 7.829 .721 8.199 .715 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.300 14.929 7.914 .636 7.944 .693 .216 16.300 14.942 7							
17.500 14.775 6.967 1.583 9.014 .787 .216 17.400 14.788 7.153 1.397 8.919 .779 .216 17.300 14.814 7.429 1.121 8.733 .762 .216 17.100 14.827 7.531 1.019 8.642 .754 .216 17.000 14.852 7.615 .935 8.551 .746 .216 16.900 14.865 7.742 .808 8.373 .731 .216 16.800 14.865 7.742 .808 8.373 .731 .216 16.600 14.878 7.789 .761 8.285 .723 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.400 14.917 7.890 .660 8.028 .700 .216 16.200 14.942 7.934 .615 7.861 .686 .216 16.100 14.955 7.							
17.400 14.788 7.153 1.397 8.919 .779 .216 17.300 14.801 7.305 1.245 8.226 .771 .216 17.200 14.814 7.429 1.121 8.733 .762 .216 17.100 14.839 7.615 .935 8.551 .746 .216 16.900 14.852 7.684 .866 8.462 .739 .216 16.800 14.865 7.742 .808 8.373 .731 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.500 14.891 7.829 .721 8.199 .715 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.400 14.917 7.890 .660 8.028 .700 .216 16.300 14.929 7.914 .636 7.944 .693 .216 16.100 14.955 7.952 .598 7.779 .678 .216 16.100 14.968 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
17.300 14.801 7.305 1.245 8.826 .771 .216 17.200 14.814 7.429 1.121 8.733 .762 .216 17.100 14.827 7.531 1.019 8.642 .754 .216 17.000 14.852 7.684 .866 8.462 .739 .216 16.900 14.852 7.684 .866 8.462 .739 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.500 14.917 7.890 .660 8.028 .700 .216 16.300 14.927 7.914 .636 7.944 .693 .216 16.100 14.955 7.952 .598 7.779 .678 .216 16.000 14.968 7.967 .583 7.667 .671 .216 15.900 14.991 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
17.200 14.814 7.429 1.121 8.733 .762 .216 17.100 14.827 7.531 1.019 8.642 .754 .216 17.000 14.839 7.615 .935 8.551 .746 .216 16.900 14.852 7.684 .866 8.462 .739 .216 16.800 14.865 7.742 .808 8.373 .731 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.600 14.904 7.862 .688 8.113 .708 .216 16.500 14.994 7.862 .688 8.113 .708 .216 16.300 14.929 7.914 .636 7.944 .693 .216 16.200 14.942 7.934 .615 7.861 .686 .216 16.100 14.968 7.967 .583 7.697 .671 .216 15.900 14.981 7.993 .557 7.537 .657 .216 15.900 15.019							
17.100 14.827 7.531 1.019 8.642 .754 .216 17.000 14.839 7.615 .935 8.551 .746 .216 16.900 14.852 7.684 .866 8.462 .739 .216 16.800 14.878 7.742 .808 8.373 .731 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.500 14.891 7.829 .721 8.199 .715 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.400 14.917 7.890 .660 8.028 .700 .216 16.300 14.929 7.914 .636 7.944 .693 .216 16.000 14.942 7.934 .615 7.861 .686 .216 16.100 14.955 7.952 .598 7.779 .678 .216 15.900 14.981 7.991 .569 7.617 .664 .216 15.900 14.994							
17.000 14.839 7.615 .935 8.551 .746 .216 16.900 14.852 7.684 .866 8.462 .739 .216 16.800 14.865 7.742 .808 8.373 .731 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.600 14.891 7.829 .721 8.199 .715 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.400 14.917 7.890 .660 8.028 .700 .216 16.300 14.929 7.914 .636 7.944 .693 .216 16.100 14.968 7.967 .583 7.799 .678 .216 16.000 14.981 7.981 .569 7.617 .664 .216 15.900 14.981 7.993 .557 7.537 .657 .216 15.500 15.019 8.003 .547 7.459 .650 .216 15.500 15.032							
16.900 14.852 7.684 .866 8.462 .739 .216 16.800 14.865 7.742 .808 8.373 .731 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.600 14.891 7.829 .721 8.199 .715 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.400 14.917 7.890 .660 8.028 .700 .216 16.300 14.927 7.914 .636 7.944 .693 .216 16.100 14.955 7.952 .598 7.779 .678 .216 16.000 14.968 7.967 .583 7.697 .671 .216 15.900 14.994 7.993 .557 .7537 .657 .216 15.500 15.019 8.013 .537 7.381 .643 .216 15.500 15.032 8.022<							
16.800 14.865 7.742 .808 8.373 .731 .216 16.700 14.878 7.789 .761 8.285 .723 .216 16.600 14.891 7.829 .721 8.199 .715 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.400 14.917 7.890 .660 8.028 .700 .216 16.300 14.929 7.914 .636 7.944 .693 .216 16.200 14.942 7.934 .615 7.861 .686 .216 16.100 14.958 7.952 .598 7.779 .678 .216 16.000 14.968 7.967 .583 7.697 .671 .216 15.900 14.981 7.981 .569 7.617 .664 .216 15.800 14.994 7.993 .557 7.537 .657 .216 15.701 15.067 8.003 .547 7.459 .650 .216 15.400 15.045							
16.700 14.878 7.789 .761 8.285 .723 .216 16.600 14.891 7.829 .721 8.199 .715 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.400 14.917 7.890 .660 8.028 .700 .216 16.300 14.929 7.914 .636 7.944 .693 .216 16.100 14.945 7.934 .615 7.861 .686 .216 16.100 14.955 7.952 .598 7.779 .678 .216 16.000 14.981 7.981 .569 7.617 .664 .216 15.900 14.981 7.981 .569 7.671 .216 15.800 14.994 7.993 .557 7.537 .657 .216 15.500 15.007 8.003 .547 7.459 .650 .216 15.500 15.032 8.022 .528 7.304 .637 .216 15.400 15.045 8.030							
16.600 14.891 7.829 .721 8.199 .715 .216 16.500 14.904 7.862 .688 8.113 .708 .216 16.400 14.917 7.890 .660 8.028 .700 .216 16.300 14.929 7.914 .636 7.944 .693 .216 16.200 14.942 7.934 .615 7.861 .686 .216 16.100 14.955 7.952 .598 7.779 .678 .216 16.000 14.968 7.967 .583 7.697 .671 .216 15.900 14.981 7.991 .569 7.617 .664 .216 15.800 14.994 7.993 .557 7.537 .657 .216 15.700 15.007 8.003 .547 7.459 .650 .216 15.500 15.032 8.022 .528 7.304 .637 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.200 15.071							
16.500 14.904 7.862 .688 8.113 .708 .216 16.400 14.917 7.890 .660 8.028 .700 .216 16.300 14.929 7.914 .636 7.944 .693 .216 16.200 14.942 7.934 .615 7.861 .686 .216 16.100 14.955 7.952 .598 7.779 .671 .216 16.000 14.968 7.967 .583 7.697 .671 .216 15.900 14.981 7.981 .569 7.617 .664 .216 15.800 14.994 7.993 .557 7.537 .657 .216 15.700 15.007 8.003 .547 7.459 .650 .216 15.500 15.032 8.022 .528 7.304 .643 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.071 8.044 .506 7.077 .617 .216 15.100 15.084							
16.400 14.917 7.890 .660 8.028 .700 .216 16.300 14.929 7.914 .636 7.944 .693 .216 16.200 14.942 7.934 .615 7.861 .686 .216 16.100 14.955 7.952 .598 7.779 .678 .216 16.000 14.968 7.967 .583 7.697 .671 .216 15.900 14.981 7.981 .569 7.617 .664 .216 15.800 14.994 7.993 .557 7.537 .657 .216 15.700 15.007 8.003 .547 7.459 .650 .216 15.600 15.019 8.013 .537 7.381 .643 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.071 8.044 .506 7.077 .617 .216 15.100 15.094 8.051 .499 7.004 .610 .216 15.000 15.097							
16.300 14.929 7.914 .636 7.944 .693 .216 16.200 14.942 7.934 .615 7.861 .686 .216 16.100 14.955 7.952 .598 7.779 .678 .216 16.000 14.981 7.967 .583 7.697 .664 .216 15.900 14.981 7.981 .569 7.617 .664 .216 15.800 14.994 7.993 .557 7.537 .657 .216 15.700 15.007 8.003 .547 7.459 .650 .216 15.600 15.019 8.013 .537 7.381 .643 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.058 8.037 .513 7.152 .633 .216 15.100 15.071 8.044 .506 7.077 .617 .216 15.100 15.097 8.057 .493 6.931 .604 .216 14.900 15.109							
16.200 14.942 7.934 .615 7.861 .686 .216 16.100 14.955 7.952 .598 7.779 .678 .216 16.000 14.968 7.967 .583 7.697 .671 .216 15.900 14.981 7.981 .569 7.617 .664 .216 15.800 14.994 7.993 .557 7.537 .657 .216 15.700 15.007 8.003 .547 7.459 .650 .216 15.600 15.019 8.013 .537 7.381 .643 .216 15.500 15.032 8.022 .528 7.304 .637 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109							
16.100 14.955 7.952 .598 7.779 .678 .216 16.000 14.968 7.967 .583 7.697 .671 .216 15.900 14.981 7.981 .569 7.617 .664 .216 15.800 14.994 7.993 .557 7.537 .657 .216 15.700 15.007 8.003 .547 7.459 .650 .216 15.600 15.019 8.013 .537 7.381 .643 .216 15.500 15.032 8.022 .528 7.304 .637 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.700 15.135							
16.000 14.968 7.967 .583 7.697 .671 .216 15.900 14.981 7.981 .569 7.617 .664 .216 15.800 14.994 7.993 .557 7.537 .657 .216 15.700 15.007 8.003 .547 7.459 .650 .216 15.600 15.019 8.013 .537 7.381 .643 .216 15.500 15.032 8.022 .528 7.304 .637 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.058 8.037 .513 7.152 .623 .216 15.200 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.500 15.148							
15.900 14.981 7.981 .569 7.617 .664 .216 15.800 14.994 7.993 .557 7.537 .657 .216 15.700 15.007 8.003 .547 7.459 .650 .216 15.600 15.019 8.013 .537 7.381 .643 .216 15.500 15.032 8.022 .528 7.304 .637 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.058 8.037 .513 7.152 .623 .216 15.200 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.063 .487 6.858 .597 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.700 15.135 8.074 .475 6.716 .585 .216 14.500 15.148							
15.800 14.994 7.993 .557 7.537 .657 .216 15.700 15.007 8.003 .547 7.459 .650 .216 15.600 15.019 8.013 .537 7.381 .643 .216 15.500 15.032 8.022 .528 7.304 .637 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.058 8.037 .513 7.152 .623 .216 15.200 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.500 15.148 8.080 .470 6.646 .579 .216 14.500 15.151							
15.700 15.007 8.003 .547 7.459 .650 .216 15.600 15.019 8.013 .537 7.381 .643 .216 15.500 15.032 8.022 .528 7.304 .637 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.058 8.037 .513 7.152 .623 .216 15.200 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.500 15.148 8.080 .470 6.646 .579 .216 14.500 15.161 8.085 .465 6.577 .573 .216 14.500 15.187							
15.600 15.019 8.013 .537 7.381 .643 .216 15.500 15.032 8.022 .528 7.304 .637 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.058 8.037 .513 7.152 .623 .216 15.200 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.700 15.135 8.074 .475 6.716 .585 .216 14.500 15.148 8.080 .470 6.646 .579 .216 14.400 15.174 8.090 .465 6.577 .573 .216 14.400 15.129							
15.500 15.032 8.022 .528 7.304 .637 .216 15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.058 8.037 .513 7.152 .623 .216 15.200 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.700 15.135 8.074 .475 6.716 .585 .216 14.500 15.148 8.080 .470 6.646 .579 .216 14.400 15.174 8.090 .465 6.577 .573 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.000 15.225							
15.400 15.045 8.030 .520 7.227 .630 .216 15.300 15.058 8.037 .513 7.152 .623 .216 15.200 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.700 15.135 8.074 .475 6.716 .585 .216 14.600 15.148 8.080 .470 6.646 .579 .216 14.500 15.161 8.085 .465 6.577 .573 .216 14.400 15.174 8.090 .460 6.509 .567 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.100 15.225							
15.300 15.058 8.037 .513 7.152 .623 .216 15.200 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.700 15.135 8.074 .475 6.716 .585 .216 14.600 15.148 8.080 .470 6.646 .579 .216 14.500 15.161 8.085 .465 6.577 .573 .216 14.400 15.174 8.090 .460 6.509 .567 .216 14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.000 15.225							
15.200 15.071 8.044 .506 7.077 .617 .216 15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.700 15.135 8.074 .475 6.716 .585 .216 14.600 15.148 8.080 .470 6.646 .579 .216 14.500 15.161 8.085 .465 6.577 .573 .216 14.400 15.174 8.090 .460 6.509 .567 .216 14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.000 15.225 8.110 .445 6.308 .549 .216 13.800 15.238							
15.100 15.084 8.051 .499 7.004 .610 .216 15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.700 15.135 8.074 .475 6.716 .585 .216 14.600 15.148 8.080 .470 6.646 .579 .216 14.500 15.161 8.085 .465 6.577 .573 .216 14.400 15.174 8.090 .460 6.509 .567 .216 14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.000 15.212 8.105 .445 6.308 .549 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.700 15.264							
15.000 15.097 8.057 .493 6.931 .604 .216 14.900 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.700 15.135 8.074 .475 6.716 .585 .216 14.600 15.148 8.080 .470 6.646 .579 .216 14.500 15.161 8.085 .465 6.577 .573 .216 14.400 15.174 8.090 .460 6.509 .567 .216 14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.100 15.212 8.105 .445 6.308 .549 .216 14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.500 15.264							
14.900 15.109 8.063 .487 6.858 .597 .216 14.800 15.122 8.069 .481 6.787 .591 .216 14.700 15.135 8.074 .475 6.716 .585 .216 14.600 15.148 8.080 .470 6.646 .579 .216 14.500 15.161 8.085 .465 6.577 .573 .216 14.400 15.174 8.090 .460 6.509 .567 .216 14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.100 15.212 8.105 .445 6.308 .549 .216 14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.500 15.289							
14.800 15.122 8.069 .481 6.787 .591 .216 14.700 15.135 8.074 .475 6.716 .585 .216 14.600 15.148 8.080 .470 6.646 .579 .216 14.500 15.161 8.085 .465 6.577 .573 .216 14.400 15.174 8.090 .460 6.509 .567 .216 14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.100 15.212 8.105 .445 6.308 .549 .216 14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.315							
14.700 15.135 8.074 .475 6.716 .585 .216 14.600 15.148 8.080 .470 6.646 .579 .216 14.500 15.161 8.085 .465 6.577 .573 .216 14.400 15.174 8.090 .460 6.509 .567 .216 14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.100 15.212 8.105 .445 6.308 .549 .216 14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.315 8.141 .409 5.803 .505 .216 13.200 15.328							
14.600 15.148 8.080 .470 6.646 .579 .216 14.500 15.161 8.085 .465 6.577 .573 .216 14.400 15.174 8.090 .460 6.509 .567 .216 14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.100 15.212 8.105 .445 6.308 .549 .216 14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.800 15.251 8.119 .431 6.113 .532 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.200 15.328							
14.500 15.161 8.085 .465 6.577 .573 .216 14.400 15.174 8.090 .460 6.509 .567 .216 14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.100 15.212 8.105 .445 6.308 .549 .216 14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.800 15.251 8.119 .431 6.113 .532 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.200 15.328 8.141 .409 5.803 .505 .216 13.100 15.341							
14.400 15.174 8.090 .460 6.509 .567 .216 14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.100 15.212 8.105 .445 6.308 .549 .216 14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.800 15.251 8.119 .431 6.113 .532 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.600 15.277 8.128 .422 5.987 .521 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.300 15.315 8.141 .409 5.803 .505 .216 13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341							
14.300 15.187 8.095 .455 6.441 .561 .216 14.200 15.199 8.100 .450 6.374 .555 .216 14.100 15.212 8.105 .445 6.308 .549 .216 14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.800 15.251 8.119 .431 6.113 .532 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.600 15.277 8.128 .422 5.987 .521 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.200 15.328 8.141 .409 5.803 .505 .216 13.100 15.341 8.149 .405 5.743 .494 .216							
14.200 15.199 8.100 .450 6.374 .555 .216 14.100 15.212 8.105 .445 6.308 .549 .216 14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.800 15.251 8.119 .431 6.113 .532 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.600 15.277 8.128 .422 5.987 .521 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.200 15.328 8.141 .409 5.803 .505 .216 13.100 15.341 8.149 .405 5.743 .494 .216							
14.100 15.212 8.105 .445 6.308 .549 .216 14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.800 15.251 8.119 .431 6.113 .532 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.600 15.277 8.128 .422 5.987 .521 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.300 15.315 8.141 .409 5.803 .505 .216 13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341 8.149 .401 5.683 .494 .216							
14.000 15.225 8.110 .440 6.242 .543 .216 13.900 15.238 8.114 .436 6.177 .538 .216 13.800 15.251 8.119 .431 6.113 .532 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.600 15.277 8.128 .422 5.987 .521 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.300 15.315 8.141 .409 5.803 .505 .216 13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341 8.149 .401 5.683 .494 .216							
13.900 15.238 8.114 .436 6.177 .538 .216 13.800 15.251 8.119 .431 6.113 .532 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.600 15.277 8.128 .422 5.987 .521 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.300 15.315 8.141 .409 5.803 .505 .216 13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341 8.149 .401 5.683 .494 .216							
13.800 15.251 8.119 .431 6.113 .532 .216 13.700 15.264 8.123 .426 6.050 .526 .216 13.600 15.277 8.128 .422 5.987 .521 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.300 15.315 8.141 .409 5.803 .505 .216 13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341 8.149 .401 5.683 .494 .216							
13.700 15.264 8.123 .426 6.050 .526 .216 13.600 15.277 8.128 .422 5.987 .521 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.300 15.315 8.141 .409 5.803 .505 .216 13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341 8.149 .401 5.683 .494 .216							
13.600 15.277 8.128 .422 5.987 .521 .216 13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.300 15.315 8.141 .409 5.803 .505 .216 13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341 8.149 .401 5.683 .494 .216							
13.500 15.289 8.132 .418 5.925 .515 .216 13.400 15.302 8.137 .413 5.863 .510 .216 13.300 15.315 8.141 .409 5.803 .505 .216 13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341 8.149 .401 5.683 .494 .216							
13.400 15.302 8.137 .413 5.863 .510 .216 13.300 15.315 8.141 .409 5.803 .505 .216 13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341 8.149 .401 5.683 .494 .216							
13.300 15.315 8.141 .409 5.803 .505 .216 13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341 8.149 .401 5.683 .494 .216							
13.200 15.328 8.145 .405 5.743 .499 .216 13.100 15.341 8.149 .401 5.683 .494 .216							
13.100 15.341 8.149 .401 5.683 .494 .216							
13.000 15.354 8.153 .396 5.624 .489 .216	13.000	15.354	8.153	.396	5.624	.489	.216
12.900 15.367 8.158 .392 5.566 .484 .216							

12.800	15.379	8.162	.388	5.508	.479	.216
12.700	15.392	8.166	.384	5.451	.474	.216
12.600	15.405	8.170	.380	5.395	.469	.216
12.500	15.418	8.173	.377	5.339	.464	.216
12.400	15.431	8.177	.373	5.284	.459	.216
12.300	15.444	8.181	.369	5.229	.454	.216
12.200	15.457	8.185	.365	5.175	.449	.216
					.445	
12.100	15.469	8.189	.361	5.122		.216
12.000	15.482	8.192	.358	5.069	.440	.216
11.900	15.495	8.196	.354	5.017	.435	.216
11.800	15.508	8.200	.350	4.965	.431	.216
11.700	15.521	8.203	.347	4.914	.426	.216
11.600	15.534	8.207	.343	4.863	.422	.216
11.500	15.547	8.210	.340	4.813	.418	.216
11.400	15.559	8.214	.336	4.764	.413	.216
11.300	15.572	8.217	.333	4.714	.409	.216
11.200	15.585	8.220	.329	4.666	.405	.216
11.100	15.598	8.224	.326	4.618	.400	.216
11.000	15.611	8.227	.323	4.570	.396	.216
10.900	15.624	8.230	.319	4.523	.392	.216
10.800	15.637	8.234	.316	4.477	.388	.216
10.700	15.649	8.237	.313	4.431	.384	.216
10.600	15.662	8.240	.310	4.386	.380	.216
10.500	15.675	8.243	.307	4.341	.376	.216
10.400	15.688	8.246	.304	4.296	.372	.216
10.300	15.701	8.249	.301	4.252	.368	.216
10.200	15.714	8.252	.297	4.208	.364	.216
10.100	15.727	8.255	.294	4.165	.361	.216
10.000	15.739	8.258	.291	4.123	.357	.216
9.900	15.752	8.261	.289	4.080	.353	.216
9.800	15.765	8.264	.286	4.039	.349	.216
9.700	15.778	8.267	.283	3.997	.346	.216
9.600	15.791	8.270	.280	3.956	.342	.216
9.500	15.804	8.273	.277	3.916	.339	.216
9.400	15.817	8.276	.274	3.876	.335	.216
9.300	15.829	8.278	.271	3.836	.332	.216
9.200	15.842	8.281	.269	3.797	.328	.216
9.100	15.855	8.284	.266	3.759	.325	.216
9.000	15.868	8.287	.263	3.720	.321	.216
8.900	15.881	8.289	.261	3.682	.318	.216
8.800	15.894	8.292	.258	3.645	.315	.216
8.700	15.907	8.294	.255	3.608	.312	.216
8.600	15.919	8.297	.253	3.571	.308	.216
8.500	15.932	8.300	.250	3.535	.305	.216
8.400	15.945	8.302	.248	3.499	.302	.216
8.300	15.958	8.305	.245	3.463	.299	.216
8.200	15.971	8.307	.243	3.428	.296	.216
8.100	15.984	8.309	.240	3.393	.293	.216
8.000	15.997	8.312	.238	3.359	.290	.216
7.900	16.009	8.314	.236	3.325	.287	.216
7.800	16.022	8.317	.233	3.291	.284	.216
7.700	16.035	8.319	.231	3.258	.281	.216
7.600	16.048	8.321	.229	3.225	.278	.216
7.500	16.061	8.324	.226	3.192	.275	.216
7.400	16.074	8.326	.224	3.160	.272	.216
7.300	16.087	8.328	.222	3.128	.269	.216
7.200	16.099	8.330	.220	3.096	.267	.216
7.100	16.112	8.332	.218	3.065	.264	.216
7.000	16.125	8.335	.215	3.034	.261	.216

6.900 16.138 8.337 .213 3.003 .258 .216

Tuscumbia BEGINNING AT RIVER MILE 6.9

*** LOADS ***

		DISSOLVED	CARBONACEOUS	
	FLOW	OXYGEN	BOD	TKN
	(CFS)	(MG/L)	(LBS/DAY)	(LBS/DAY)
UPSTREAM	16.138	8.337	261.73	22.52
DIST. INPUT	2.840	7.000	30.61	1.53

*** PARAMETERS ***

CS= 8.55 MG/L PA= .00 MG/L RA= .00 MG/L S= .00 MG/L

KR= .30 /DAY KD= .30 /DAY KN= .30 /DAY KA= 7.37 /DAY

TEMP=23.90 C

REAERATION COEFFICIENT SPECIFIED

*** STREAM CONDITION ***

RIVER	FLOW	DO	DEFICIT	CBOD	TKN	VEL
MILE	CFS	MG/L	MG/L	MG/L	MG/L	FPS
6.900	16.611	8.299	.251	2.975	.254	.232
6.800	16.611	8.309	.241	2.947	.252	.232
6.700	17.085	8.287	.262	2.894	.245	.232
6.600	17.558	8.272	.278	2.844	.239	.232
6.500	18.031	8.261	.289	2.796	.233	.232
6.400	18.505	8.254	.296	2.750	.228	.232

Tuscumbia BEGINNING AT RIVER MILE 6.4

*** LOADS ***

	DISSOLVED	CARBONACEOUS	
FLOW	OXYGEN	BOD	TKN
(CFS)	(MG/L)	(LBS/DAY)	(LBS/DAY)
18.505	8.254	274.79	22.75
.070	7.000	.75	.04
	(CFS) 18.505	FLOW OXYGEN (CFS) (MG/L) 18.505 8.254	(CFS) (MG/L) (LBS/DAY) 18.505 8.254 274.79

*** PARAMETERS ***

CS= 8.55 MG/L PA= .00 MG/L RA= .00 MG/L S= .00 MG/L

KR= .30 /DAY KD= .30 /DAY KN= .30 /DAY KA= 7.37 /DAY

TEMP=23.90 C

REAERATION COEFFICIENT SPECIFIED

*** STREAM CONDITION ***

RIVER FLOW DO DEFICIT CBOD TKN VEL MILE CFS MG/L MG/L MG/L MG/L FPS

6.400	18.508	8.253	.297	2.750	.228	.230
6.300	18.508	8.274	.276	2.724	.226	.230
6.200	18.512	8.292	.258	2.699	.223	.230
6.100	18.516	8.306	.244	2.674	.221	.230
6.000	18.519	8.318	.232	2.649	.219	.230
5.900	18.523	8.329	.221	2.625	.217	.230
5.800	18.527	8.337	.213	2.600	.215	.230
5.700	18.530	8.345	.205	2.576	.213	.230
5.600	18.534	8.351	.199	2.552	.211	.230
5.500	18.538	8.357	.193	2.529	.209	.230
5.400	18.541	8.362	.188	2.505	.207	.230
5.300	18.545	8.366	.184	2.482	.205	.230
5.200	18.549	8.370	.180	2.459	.203	.230
5.100	18.553	8.373	.177	2.436	.202	.230
5.000	18.556	8.376	.174	2.414	.200	.230
4.900	18.560	8.379	.171	2.391	.198	.230
4.800	18.564	8.381	.169	2.369	.196	.230
4.700	18.567	8.384	.166	2.347	.194	.230
4.600	18.571	8.386	.164	2.326	.192	.230
4.600	18.575	8.386	.164	2.326	.192	.230

Tuscumbia BEGINNING AT RIVER MILE 4.6

*** LOADS ***

		DISSOLVED	CARBONACEOUS	
	FLOW	OXYGEN	BOD	TKN
	(CFS)	(MG/L)	(LBS/DAY)	(LBS/DAY)
UPSTREAM	18.575	8.386	233.27	19.29
DIST. INPUT	.040	7.000	.43	.02

*** PARAMETERS ***

CS=	8.55 MG/L	PA=	.00 MG/L	RA=	.00 MG/L	S=	.00 MG/L
KR=	.30 /DAY	KD=	.30 /DAY	KN=	.30 /DAY	KA=	7.37 /DAY

TEMP=23.90 C

REAERATION COEFFICIENT SPECIFIED

*** STREAM CONDITION ***

RIVER	FLOW	DO	DEFICIT	CBOD	TKN	VEL
MILE	CFS	MG/L	MG/L	MG/L	MG/L	FPS
4.600	18.580	8.385	.165	2.326	.192	.260
4.500	18.580	8.387	.163	2.307	.191	.260
4.400	18.585	8.389	.161	2.288	.189	.260
4.300	18.590	8.391	.159	2.269	.188	.260
4.200	18.595	8.392	.158	2.250	.186	.260
4.100	18.600	8.394	.156	2.232	.184	.260
4.000	18.605	8.395	.155	2.214	.183	.260
3.900	18.610	8.397	.153	2.195	.181	.260

Tuscumbia BEGINNING AT RIVER MILE 3.9

*** LOADS ***

		DISSOLVED	CARBONACEOUS	
	FLOW	OXYGEN	BOD	TKN
	(CFS)	(MG/L)	(LBS/DAY)	(LBS/DAY)
UPSTREAM	18.610	8.397	220.62	18.23
DIST. INPUT	.350	7.000	3.77	.19

*** PARAMETERS ***

CS= 8.55 MG/L PA= .00 MG/L RA= .00 MG/L S= .00 MG/L

KR= .30 /DAY KD= .30 /DAY KN= .30 /DAY KA= 7.37 /DAY

TEMP=23.90 C

REAERATION COEFFICIENT SPECIFIED

*** STREAM CONDITION ***

RIVER	FLOW	DO	DEFICIT	CBOD	TKN	VEL
MILE	CFS	MG/L	MG/L	MG/L	MG/L	FPS
3.900	18.645	8.394	.156	2.195	.181	.216
3.800	18.645	8.396	.154	2.173	.179	.216
3.700	18.680	8.397	.153	2.152	.178	.216
3.600	18.715	8.397	.153	2.130	.176	.216
3.500	18.750	8.398	.152	2.109	.174	.216
3.400	18.785	8.398	.152	2.088	.172	.216
3.300	18.820	8.399	.151	2.068	.170	.216
3.200	18.855	8.400	.150	2.047	.168	.216
3.100	18.890	8.401	.149	2.027	.167	.216
3.000	18.925	8.402	.148	2.007	.165	.216
3.000	18.960	8.400	.150	2.007	.165	.216

Tuscumbia BEGINNING AT RIVER MILE 3.0

*** LOADS ***

	DISSOLVED	CARBONACEOUS	
FLOW	OXYGEN	BOD	TKN
(CFS)	(MG/L)	(LBS/DAY)	(LBS/DAY)
18.960	8.400	205.48	16.86
.150	7.000	1.62	.08
	(CFS) 18.960	FLOW OXYGEN (CFS) (MG/L) 18.960 8.400	FLOW OXYGEN BOD (CFS) (MG/L) (LBS/DAY) 18.960 8.400 205.48

*** PARAMETERS ***

CS= 8.55 MG/L PA= .00 MG/L RA= .00 MG/L S= .00 MG/L

KR= .30 /DAY KD= .30 /DAY KN= .30 /DAY KA= 7.37 /DAY

TEMP=23.90 C

REAERATION COEFFICIENT SPECIFIED

*** STREAM CONDITION ***

RIVER	FLOW	DO	DEFICIT	CBOD	TKN	VEL
MILE	CFS	MG/L	MG/L	MG/L	MG/L	FPS
3.000	18.972	8.399	.151	2.007	.165	.226
2.900	18.972	8.403	.147	1.988	.163	.226
2.800	18.985	8.405	.145	1.970	.162	.226
2.700	18.997	8.408	.142	1.951	.160	.226
2.600	19.010	8.410	.140	1.933	.158	.226
2.500	19.022	8.412	.138	1.915	.157	.226
2.400	19.035	8.413	.137	1.897	.155	.226
2.300	19.047	8.415	.135	1.879	.154	.226
2.200	19.060	8.417	.133	1.861	.152	.226
2.100	19.072	8.418	.132	1.844	.151	.226
2.000	19.085	8.420	.130	1.827	.150	.226
1.900	19.097	8.421	.129	1.810	.148	.226
1.900	19.110	8.420	.130	1.810	.148	.226

Tuscumbia BEGINNING AT RIVER MILE 1.9

*** LOADS ***

		DISSOLVED	CARBONACEOUS	
	FLOW	OXYGEN	BOD	TKN
	(CFS)	(MG/L)	(LBS/DAY)	(LBS/DAY)
UPSTREAM	19.110	8.420	186.77	15.28
DIST. INPUT	.040	7.000	.43	.02

*** PARAMETERS ***

CS= 8.55 MG/L PA= .00 MG/L RA= .00 MG/L S= .00 MG/L

KR= .30 /DAY KD= .30 /DAY KN= .30 /DAY KA= 7.37 /DAY

TEMP=23.90 C

REAERATION COEFFICIENT SPECIFIED

*** STREAM CONDITION ***

RIVER	FLOW	DO	DEFICIT	CBOD	TKN	VEL
MILE	CFS	MG/L	MG/L	MG/L	MG/L	FPS
1.900	19.115	8.420	.130	1.810	.148	.227
1.800	19.115	8.422	.128	1.793	.147	.227
1.700	19.121	8.424	.126	1.776	.145	.227
1.600	19.127	8.425	.125	1.760	.144	.227
1.500	19.132	8.427	.123	1.743	.143	.227
1.400	19.138	8.428	.122	1.727	.141	.227
1.300	19.144	8.430	.120	1.711	.140	.227
1.300	19.150	8.429	.121	1.711	.140	.227

Tuscumbia BEGINNING AT RIVER MILE 1.3

*** LOADS ***

DISSOLVED CARBONACEOUS
FLOW OXYGEN BOD TKN
(CFS) (MG/L) (LBS/DAY) (LBS/DAY)
UPSTREAM 19.150 8.429 176.96 14.46

DIST. INPUT .080 7.000 .86 .04

*** PARAMETERS ***

CS= 8.55 MG/L PA= .00 MG/L RA= .00 MG/L S= .00 MG/L

KR= .30 /DAY KD= .30 /DAY KN= .30 /DAY KA= 7.37 /DAY

TEMP=23.90 C

REAERATION COEFFICIENT SPECIFIED

* * *	STREAM	CONDITION	* * *

RIVER	FLOW	DO	DEFICIT	CBOD	TKN	VEL
		_	_			
\mathtt{MILE}	CFS	MG/L	$\mathtt{MG/L}$	MG/L	$\mathtt{MG/L}$	FPS
1.300	19.155	8.429	.121	1.711	.140	.225
1.200	19.155	8.431	.119	1.695	.139	.225
1.100	19.161	8.432	.118	1.679	.137	.225
1.000	19.167	8.433	.117	1.664	.136	.225
.900	19.172	8.435	.115	1.648	.135	.225
.800	19.178	8.436	.114	1.633	.133	.225
.700	19.184	8.437	.113	1.617	.132	.225
.600	19.190	8.438	.112	1.602	.131	.225
.500	19.195	8.439	.111	1.587	.130	.225
.400	19.201	8.440	.110	1.572	.128	.225
.300	19.207	8.441	.109	1.558	.127	.225
.200	19.212	8.442	.108	1.543	.126	.225
.100	19.218	8.443	.107	1.529	.125	.225
.000	19.224	8.444	.106	1.514	.124	.225

HEADWATER

RIVER	MILE	Q	DO	CBOD	TKN	\mathtt{TYPE}	DESCRIPTION
Tuscumbia	31.90	.10	7.00	2.0	.1		

WASTE SOURCE

RIVER	MILE	Q	DO	CBOD	TKN	TYPE	DESCRIPTION
Tuscumbia	31.90	3.09	6.00	345.2	33.4	.00	Boonville 9/2/6
Tuscumbia	29.20	.93	6.00	115.0	10.0	.00	Reinzi 10/2/6
Tuscumbia	21.90	9.28	6.00	1150.7	100.1	.00	10/2/6 Corinth

SPECIFIC INPUT

RIVER	MILE	Q	DO	CBOD	TKN	TYPE	DESCRIPTION
Tuscumbia	31.90	.01	7.00	.1	.0	1.00	
Tuscumbia	30.00	.05	7.00	.5	.0	1.00	
Tuscumbia	29.20	.02	7.00	. 2	.0	1.00	
Tuscumbia	28.60	.11	7.00	1.2	.1	1.00	
Tuscumbia	26.30	.38	7.00	4.1	. 2	1.00	
Tuscumbia	23.80	.12	7.00	1.3	.1	1.00	
Tuscumbia	21.90	.66	7.00	7.1	. 4	1.00	
Tuscumbia	18.00	1.44	7.00	15.5	.8	1.00	
Tuscumbia	6.90	2.84	7.00	30.6	1.5	1.00	
Tuscumbia	6.40	.07	7.00	.8	.0	1.00	
Tuscumbia	4.60	.04	7.00	. 4	.0	1.00	

Tuscumbia Tuscumbia Tuscumbia Tuscumbia	3.90 3.00 1.90 1.30	.3 .1 .0	5 7.00 4 7.00))	3.8 1.6 .4 .9		.2 1. .1 1. .0 1.	00 00		
REACH E	PARAMETER									
RIVER Tuscumbia	MILE 31.90	CD	ND C	.V	NV D	DEPTH	VEL .28	s .11	C 14.31	KA
Tuscumbia Tuscumbia Tuscumbia	30.00 29.20 28.60						.24 .22 .17	.11 .11 .11	15.30 12.96 5.00	
Tuscumbia Tuscumbia Tuscumbia	26.30 23.80 21.90						.16 .17 .15	.11		1.48
Tuscumbia Tuscumbia Tuscumbia	18.00 6.90 6.40						.22			6.72 6.72 6.72
Tuscumbia Tuscumbia Tuscumbia	4.60 3.90 3.00						.26 .22 .23			6.72 6.72 6.72
Tuscumbia Tuscumbia	1.90						.23			6.72 6.72
REACH F	RATE									
RIVER Tuscumbia	MILE 31.90	TEMP 23.90	KR .30	KD.30	.3	CN 30	PA .00	RA .00	s .00	
Tuscumbia Tuscumbia	30.00 29.20	23.90 23.90	.30	.30	.3	30		.00	.00	
Tuscumbia	28.60	23.90	.30	.30	. 3	30	.00	.00	.00	
Tuscumbia Tuscumbia	26.30 23.80	23.90 23.90	.30 .30	.30	.3		.00	.00	.00	
Tuscumbia	21.90	23.90	.30	.30	. 3	30	.00	.00	.00	
Tuscumbia	18.00	23.90	.30	.30	. 3		.00	.00	.00	
Tuscumbia	6.90	23.90	.30	.30	.3		.00	.00	.00	
Tuscumbia Tuscumbia	6.40 4.60	23.90 23.90	.30 .30	.30	.3		.00	.00	.00	
Tuscumbia	3.90	23.90	.30	.30	.3		.00	.00	.00	
Tuscumbia	3.00	23.90	.30	.30	.3		.00	.00	.00	
Tuscumbia	1.90	23.90	.30	.30	. 3		.00	.00	.00	
Tuscumbia	1.30	23.90	.30	.30	.3	30	.00	.00	.00	
SEQUENC	CE TABLE									
RIVER	TRIBUTA	ARY	TRIBUTARY	,	ORG	GIN T	rerminus			
Tuscumbia					31.		30.00			
Tuscumbia					30.		29.20			
Tuscumbia					29.		28.60			
Tuscumbia					28.		26.30			
Tuscumbia Tuscumbia					26. 23.		23.80 21.90			
Tuscumbia					23. 21.		18.00			
					10	00	10.00			

18.00

6.90

6.90

6.40

Tuscumbia Tuscumbia

Tuscumbia	6.40	4.60
Tuscumbia	4.60	3.90
Tuscumbia	3.90	3.00
Tuscumbia	3.00	1.90
Tuscumbia	1.90	1.30
Tuscumbia	1.30	.00
DELTA= .10		
Stop - Program terminated.		

$Appendix \ B-Tuscumbia \ River \ Monitoring \ Report$